
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Online Intrusion Detection System Modeling

Md Nurul Hasan
1

1MTech, Department of Computer Science, Bharat University, Khujuti Para, West Bengal, India

Abstract
An intrusion detection system (IDS) is a security layer used

to detect ongoing intrusive activities in information

systems. Traditionally, intrusion detection relies on

extensive knowledge of security experts, in particular, on

their familiarity with the computer system to be protected.

Alert aggregation is an important subtask of intrusion

detection. The goal is to identify and to cluster

differentalerts—produced by low-level intrusion detection

systems, firewalls, etc.—belonging to a specific attack

instance which has been Initiated by an attacker at a certain

point in time. With three benchmark data sets, we

demonstrate that it is possible to achieve reduction rates of

up to 99.96 percent while the number of missing meta-

alerts is extremely low. In addition, meta-alerts are

generated with a delay of typically only a few seconds after

observing the first alert belonging to a new attack instance.

Keywords—Attack detection model, Intrusion

detection, alert aggregation, generative modeling,

data stream algorithm

I. Introduction

Detection systems (IDS) are besides other

Protective measures such as virtual private networks,

Authenticationmechanisms or encryption techniques

veryImportant to guarantee information security.

They help to defend against the various threats to

which networks and hosts are exposed to by detecting

the actions of attackers or Attack tools in a network

or host-based manner with misuse or anomaly

detection techniques . At present, most IDS are quite

reliable in detecting suspicious actions by evaluating

TCP/IP connections or log files, for instance. Once an

IDS finds a suspicious action, it Immediately creates

an alert which contains information about the source,

target, and estimated type of the attack (e.g., SQL

injection, buffer overflow, or denial of service). As

the intrusive actions caused by a single attack

instance— Which is the occurrence of an attack of a

particular type that has been launched by a specific

attacker at a certain point in time—are often spread

over many network connections or log file entries, a

single attack instance often results in Hundreds or

even thousands of alerts. IDS usually focus on

Detectingattack types, but not on distinguishing

between differentattack instances. In addition, even

low rates of false Alerts could easily result in a high

total number of false alerts if thousands of network

packets or log file entries are Inspected. As a

consequence, the IDS creates many alerts at a low

level of abstraction. It is extremely difficult for a

human security expert to inspect this flood of alerts,

and decisions that follow from single alerts might be

wrong with a relatively high probability. In our

opinion, “perfect” IDS should be situation-aware in

the sense that at any point in time it should “know”

what is going on in its environment regarding attack

instances (of various types) and attackers. In this

paper, we make an important step toward this goal by

introducing and evaluating a new technique for alert

aggregation. Alerts may originate from low-level IDS

such as those mentioned above, from firewalls (FW),

etc. Alerts that belong to one Attack instance must be

clustered together and meta-alerts must be generated

for these clusters. The main goal is to reduce the

amount of alerts substantially without losing any

Important information which is necessary to identify

ongoing attack instances. We want to have no

missing met alerts, but in turn we accept false or

redundant meta-alerts to a certain degree. This

problem is not new, but current solutions are

Typically based on a quite simple sorting of alerts,

e.g., according to their source, destination, and attack

type. Under real conditions such as the presence of

classification errors of the low-level IDS (e.g., false

alerts), uncertainty with respect to the source of the

attack due to spoofed IP addresses, or wrongly

adjusted time windows, for instance, such an

approach fails quite often. Our approach has the

following distinct properties: . It is a generative

modeling approach using probabilistic methods.

Assuming that attack instances can be regarded as

random processes “producing” alerts, we aim at

modeling these processes using approximate

maximum likelihood parameter estimation

techniques. Thus, the beginning as well as the

completion of attack instances can be detected. . It is

a data stream approach, i.e., each observed alert is

Processed only a few times . Thus, it can be Applied

online and under harsh timing constraints.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

II.Related Work

Most existing IDS are optimized to detect attacks

with high accuracy. However, they still have various

disadvantages That have Been outlined in a number

of publications and a lot of work has been done to

analyze IDS in order to direct Futureresearch , for

instance. Besides others, one drawback is the large

amount of alerts produced. Recent research focuses

on the correlation of alerts from (possibly multiple)

IDS. If not stated otherwise, all approaches outlined

in the following present either online algorithms or—

as we see it—can easily be extended to an online

version. Probably, the most comprehensive approach

to alert

Correlation is introduced in . One step in the

presented Correlation approach is attack thread

reconstruction, which can be seen as a kind of attack

instance recognition. No clustering algorithm is used,

but a strict sorting of alerts within a temporal window

of fixed length according to the source, destination,

and attack classification (attack type). In , a similar

approach is used to eliminate duplicates, i.e., alerts

that share the same quadruple of source and

destination address as well as source and destination

port. In addition, alerts are aggregated (online) into

predefined clusters (so-called situations) in order to

provide a more condensed view of the current attack

situation. The definition of such situations is also

used in to cluster alerts. In , alert clustering is used to

group alerts that belong to the same attack

occurrence. Even though called clustering, there is no

clustering algorithm in a classic sense. The alerts

from one (or possibly several) IDS are stored in a

relational database and a similarity relation—which is

based on expert rules—is used to group similar alerts

together. Two alerts are defined to be similar, for

instance, if both occur within a fixed time window

and their source and target match exactly. As already

mentioned, these approachesare likely to fail under

real-life conditions with imperfect classifiers (i.e.,

low-level IDS) with false alerts or wrongly adjusted

time windows. Another approach to alert correlation

is presented in . A weighted, attribute-wise similarity

operator is used to decide whether to fuse two alerts

or not. However, as already stated in and , this

approach suffers from the high number of parameters

that need to be set. The similarity operator presented

in has the same disadvantage— there are lots of

parameters that must be set by the user and there is

no or only little guidance in order to find good

values. In , another clustering algorithm that is based

on attribute-wise similarity measures with

userdefined parameters is presented. However, a

closer look at the parameter setting reveals that the

similarity measure, in fact, degenerates to a strict

sorting according to the source and destination IP

addresses and ports of the alerts. The drawbacks that

arise thereof are the same as those mentioned above.

In , three different approaches are presented to fuse

alerts. The first, quite simple one groups alerts

according to their source IP address only. The other

two approaches are based on different supervised

learning techniques. Besides a basic least-squares

error approach, multilayer perceptrons, radial basis

function networks, and decision trees are used to

decide whether to fuse a new alert with an already

existing meta-alert (called scenario) or not. Due to

the supervised nature, labeled training data need to

begenerated which could be quite difficult in case of

various attack instances. The same or quite similar

techniques as described so far are also applied in

many other approaches to alert correlation, especially

in the field of intrusion scenario detection. Prominent

research in scenario detection is described in , for

example. More details can be found in . In , an offline

clustering solution based on the CURE algorithm is

presented. The solution is restricted to numerical

attributes. In addition, the number of clusters must be

set manually. This is problematic, as in fact it

assumes that the security expert has knowledge about

the actual number of ongoing attack instances. The

alert clustering solution described in is more related

to ours. A link-based clustering approach is used to

repeatedly fuse alerts into more generalized ones. The

intention is to discover the reasons for the existence

of the majority of alerts, the socalled root causes, and

to eliminate them subsequently. An attack instance in

our sense can also be seen as a kind of root cause, but

in root causes are regarded as “generally persistent”

which does not hold for attack instances that occur

only within a limited time window. Furthermore,

only root causes that are responsible for a majority of

alerts are of interest and the attribute-oriented

induction algorithm is forced “to find large clusters”

as the alert load can thus be reduced at most. Attack

instances that result in a small number of alerts (such

as PHF or FFB) are likely to be ignored completely.

The main difference to our approach is that the

algorithm can only be used in an offline setting and is

intended to analyze historical alert logs. In contrast,

we use an online approach to model the current attack

situation. The alert clustering approach described in

is based on but aims at reducing the false positive

rate. The created cluster structure is used as a filter to

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

reduce the amount of created alerts. Those alerts that

are similar to already known false positives are kept

back, whereas alerts that are considered to be

legitimate (i.e., dissimilar to all known false

positives) are reported and not further aggregated.

The same idea—but based on a different offline

clustering algorithm—is presented in. A completely

different clustering approach is presented in . There,

the reconstruction error of an autoassociator neural

network (AA-NN) is used to distinguish different

types of alerts. Alerts that yield the same (or a

similar) reconstruction error are put into the same

cluster. The approach can be applied online, but an

offline training phase and training data are needed to

train the AA-NN and also to manually adjust

intervals for the reconstruction error that determine

which alerts are clustered together.

III.Proposed System

Alerts may also beproduced by FW or the like.

At the alert processing layer,the alert aggregation

module has to combine alerts that areassumed to

belong to a specific attack instance. Thus, so-

calledmeta-alerts are generated. Meta-alerts are used

orenhanced in various ways, e.g., scenario detection

ordecentralized alert correlation. An important task of

thereaction layer is reporting.The overall architecture

of the distributed intrusiondetection system and a

framework for large-scale simulationsare described in

more detail.In our layered ID agent architecture, each

layer assesses, filters, and/or aggregates information

produced by a lower layer. Thus, relevant

information gets more and more condensed and

certain, and, therefore, also more valuable. We aim at

realizing each layer in a way such that the recall of

the applied techniques is very high, possibly at the

cost of a slightly poorer precision . In other words,

with the alert aggregation module—on which we

focus in this paper—we want to have a minimal

number of missingmeta-alerts (false negatives) and

we accept some false metaalerts (false positives) and

redundant meta-alerts in turn. turned out that due to

the dimensionality reduction by the AA-NN, alerts of

different types can have the same reconstruction error

which leads to erroneous clustering. In our prior

work, we applied the well-known c-means clustering

algorithm in order to identify attack instances.

However, this algorithm also works in a purely

offlinemanner.

Web search engines provide an efficient interface

to this vast information. Page counts and snippets are

two useful information sources provided by most web

search engines. Page count of a query is an estimate

of the number of pages that contain the query words.

Fig. 1 Shows the Architecture diagram.

IV. A Novel Online Alert

AggregationTechnique

In this section, we describe our new alert

aggregationApproach which is—at each point in

time—based on aprobabilistic model of the current

situation. To outline thepreconditions and objectives

of alert aggregation, we startwith a short sketch of

our intrusion framework. Then, webriefly describe

the generation of alerts and the alert format.We

continue with a new clustering algorithm for

offlinealert aggregation which is basically a

parameter estimationtechnique for the probabilistic

model. After that, we extendthis offline method to an

algorithm for data stream clusteringwhich can be

applied to online alert aggregation. Finally, wemake

some remarks on the generation of meta-alerts.

Sensor Networks

The extensive number of research work in this

area has appeared in the literature. Due to the limited

energy budget available at sensor nodes, the primary

issue is how to develop energy-efficient techniques to

reduce communication and energy costs in the

networks. Approximate-based data aggregation

techniques have also been proposed. The idea is to

tradeoff some data quality for improved energy

efficiency. Silberstein et al. develop a sampling-based

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

approach to evaluate approximate top-k queries in

wireless sensor networks. Based on statistical

modeling techniques, a model-driven approach was

proposed in to balance the confidence of the query

answer against the communication cost in the

network. Moreover, continuous top-k queries for

sensor networks have been studied in and. In

addition, a distributed threshold join algorithm has

been developed for top-k queries. These studies,

considering no uncertain data, have a different focus

from our study.

V.Offline Alert Aggregation

In this section, we introduce an offline algorithm

for alertAggregation which will be extended to a data

streamalgorithm for online aggregation in .Assume

that a host with an ID agent is exposed to acertain

intrusion situation as sketched in : One orseveral

attackers launch several attack instances belongingto

various attack types. The attack instances each cause

anumber of alerts with various attribute values. Only

two ofthe attributes are shown and the

correspondence of alertsand (true or estimated) attack

instances is indicated bydifferent symbols. shows a

view on the “idealworld” which an ID agent does not

have. The agent onlyhas observations of the detectors

(alerts) in the attributespace without attack instance

labels as outlined in .The task of the alert aggregation

module is now to estimatethe assignment to instances

by using the unlabeled observations only and by

analyzing the cluster structurein the attribute space.

That is, it has to reconstruct the attacksituation. Then,

meta-alerts can be generated that arebasically an

abstract description of the cluster of alertsassumed to

originate from one attack instance. Thus, theamount

of data is reduced substantially without losing

important information. shows the result of

areconstruction of the situation. There may be

differentpotentially problematic situations:

1. False alerts are not recognized as such and

wronglyassigned to clusters: This situation is

acceptable aslong as the number of false alerts is

comparably low.

2. True alerts are wrongly assigned to clusters:

Thissituation is not really problematic as long as

themajority of alerts belonging to that cluster

iscorrectly assigned. Then, no attack instance

ismissed.

3. Clusters are wrongly split: This situation is

undesiredbut clearly unproblematic as it leads

toredundant meta-alerts only. Only the data

reductionrate is lower, no attack instance is missed.

4. Several clusters are wrongly combined into

one: This situation is definitely problematic as

attackinstances may be missed.According to our

objectives we must try toavoid the latter situation but

we may accept the formerthree situations to a certain

degree.How can the set of samples be clustered (i.e.,

aggregated)to generate meta-alerts? Here, the answer

to thisquestion is identical to the answer to the

following: Howcan an attack situation be modeled

with a parameterizedprobabilistic model and how can

the parameters beestimated from the

observations?First, we introduce a model for a single

attack instance.We regard an attack instance as a

random process generatingalerts that are distributed

according to a certain multivariateprobability

distribution. The alert space is composedof several

attributes.

VI. Associated Work

In recent years, many works have been done to

Here; we review representative work in the areas of

processing in wireless sensor networks, and 2

processing on uncertain data. Top-k query processing

in sensor networks. An extensive number of research

works in this area has appeared in the literature [21],

[24], [25], [26]). Due to the limited energy budget

available at sensor nodes, the primary issue is how to

develop energy-efficient techniques to reduce

communication and energy costs in the networks.

TAG [21] is one of the first studies in this area. By

exploring the semantics of aggregate operators (e.g.,

sum, avg, and top-k), in-network processing approach

is adopted to suppress redundant data transmissions

in wireless sensor networks. Approximate-based data

aggregation techniques have also been proposed [27],

[25]. The idea is to tradeoff some data quality for

improved energy efficiency. Silberstein et al. develop

a sampling-based approach to evaluate approximate

on statistical modeling techniques, a model-driven

approach was proposed in [5] to balance the

confidence of the query answer against the

communication cost in the network. Moreover,

continuous top-k queries for sensor networks have

been studied in [28] and [29]. In addition, a

distributed threshold join algorithm has been

developed for top-k queries [24]. These studies,

considering no uncertain data, have a different focus

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

from our study. Top-k query processing on uncertain

data. While research works on conventional top-k

queries are mostly based on some deterministic

scoring functions, the new factor of tuple

membership probability in uncertain databases makes

evaluation of probabilistic top-k queries very

complicated since the top-k answer set depends not

only on the ranking scores of candidate tuples but

also their probabilities [8]. For uncertain databases,

two interesting top-k definitions (i.e., U-Topk and U-

kRanks) and A_-like algorithms are proposed [17].

U-Topk returns a list of k tuples that has the highest

probability to be in the top-k list over all possible

worlds. U-kRanks returns a list of k tuples such that

the ith record has the highest probability to be the ith

best record in all possible worlds. In [13], PT-Topk

query, which returns the set of tuples with a

probability of at least p to be in the top-k lists in the

possible worlds, is studied. Inspired by the concept of

dominate set in the top-k query, an algorithm which

avoids unfolding all possible worlds is given.

Besides, a sampling method is developed to quickly

compute an approximation with quality guarantee to

the answer set by drawing a small sample of the

uncertain data. In [19], the expected rank of each

tuple across all possible worlds serves as the ranking

function for finding the final answer. In [30], U-Topk

and U-kRank queries are improved by exploiting

their stop conditions. In [31], all existing top-k

semantics have been unified by using generating

functions. Recently, a study on processing top-k

queries over a distributed uncertain database is

reported in [14] and [23]. Li et al. [14] only support

top-k queries with the expected ranking semantic. On

the contrary, our proposal is a general approach

which is applicable to probabilistic top-k queries with

any semantic. Furthermore, instead of repeatedly

requesting data which may last for several rounds,

our protocols are guaranteed to be completed within

no more than two rounds. These differences uniquely

differentiate our effort from [14]. Our previous work

[23] as the initial attempt only includes the concept of

sufficient set. In this paper, besides of sufficient set,

we propose another important concept of necessary

set. With the aid of these two concepts, we further

develop a suite of algorithms, which show much

better performance than the one in [23]. Probabilistic

ranked queries based on uncertainty at the attribute

level are studied in [32], [33], and [19]. A unique

study that ranks tuples by their probabilities

satisfying the query is presented in [12]. Finally,

uncertain top-k query is studied under the setting of

streaming databases where a compact data set is

exploited to support efficient slide window top-k

queries [18]. We will apply sufficient set and

necessary set to sensor networks with tree topology,

to further improve query processing performance by

facilitating sophisticated in-network filtering at the

intermediate nodes along the routing path to the root

VII. Experimental Setup And Result

This section evaluates the new alert aggregation

approach.We use three different data sets to

demonstrate the

Table 1.ROC curve for the SVM detector

Feasibility of the proposed method: The first is the

well-knownDARPA intrusion detection evaluation

data set [32],for the second we used real-life network

traffic datacollected at our university campus

network, and the thirdcontains firewall log messages

from a commercial Internetservice provider. All

experiments were conducted on an PCwith 2.20 GHz

and 2 GB of RAM.

Description of the Benchmark Data Sets

DARPA Data

For the DARPA evaluation [32], several weeks

of trainingand test data have been generated on a test

bed that emulatesa small government site. The

network architecture as well asthe generated network

traffic has been designed to be similarto that of an Air

Force base. We used the TCP/IP networkdump as

input data and analyzed all 104 TCP-based

attackinstances (corresponding to more than 20 attack

types) thathave been launched against the various

target hosts. Assketched in Section 3.2, sensors

extract statistical informationfrom the network traffic

data. At the detection layer, weapply SVM to classify

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

the sensor events. By applying avarying threshold to

the output of the classifier, a so-calledreceiver

operating characteristics (ROC) curve can becreated

[38]. The ROC curve in Fig. 4 plots the true

positiverate (TPR, number of true positives divided

by the sum oftrue positives and false negatives)

against the false positiverate (FPR, number of false

positives divided by the sum offalse positives and

true negatives) for the trained SVM. Eachpoint of the

curve corresponds to a specific threshold.

Fouroperating points (OP) are marked. OP 1 is the

one with thesmallest overall error, but as we want to

realize a high recall,we also investigate three more

operating points whichexhibit higher TPR at the cost

of an increased FPR. We willalso investigate the

aggregation under idealized conditionswhere we

assume to have a perfect detector layer with

nomissing and no false alerts at all. As attributes for

the alerts,we use the source and destination IP

address, the source anddestination port, the attack

type, and the creation timedifferences (based on the

creation time stamps).

Table 1 shows the number of alerts produced for

the different OP and also for the idealized condition,

i.e., aperfect detection layer. In addition, the number

of attackinstances for which at least one alert is

generated by thedetector layer is also given. Note that

we have 104 attackinstances in the data set

altogether. For OP 1, there are threeattack instances

for which not even a single alert is created,i.e., these

instances are already missed at the detection

layer.The three instances are missed because there are

only a fewtraining samples of the corresponding

attack types in thedata set which results in a bad

generalization performanceof the SVM. Switching

from OP 1 to OP 2 alerts are createdfor one more

instance. OP 3 and OP 4 do not yield anyfurther

improvement.We are aware of the various critique on

the DARPAbenchmark data (e.g., published in [39],

[40]) and thelimitations that emerge thereof. Despite

all disadvantages,this data set is still frequently

used—not least because it is awell-documented and

publicly available data set that allowsthe comparison

of results of different researchers. In orderto achieve

fair and realistic results, we carefully analyzed

allknown deficiencies and omitted features that could

bias thedetector classification performance. Besides,

most of thedeficiencies of this data set have an

impact on the detectorlayer but only little influence

on the alert aggregationresults. A detailed discussion

can be found in [19] and [41].

Input of the Alert Aggregation Algorithm

Table 2.

VIII.Results

In the following, the results for the alert

aggregation arepresented. For all experiments, the

same parameter settingsare used. We set the threshold

_ that decides whether to adda new alert to an

existing component or not to five percent,and the

value for the threshold _ that specifies the

allowedtemporal spread of the alert buffer to 180

seconds. _ was setthat low value in order to ensure

that even a quite smalldegrade of the cluster quality,

which could indicate a newattack instance, results in

a new component. A small valueof _, of course,

results in more components and, thus, in alower

reduction rate, but it also reduces the risk of

missingattack instances. The parameter _, which is

used in thenovelty assessment function, controls the

maximum timethat new alerts are allowed to reside in

the buffer B. In orderto keep the response time short,

we set it to 180 s which wethink is a reasonable

value. For both parameters, there werelarge intervals

in which parameter values could be chosenwithout

deteriorating the results. A detailed analysis

anddiscussion on the effects of different parameter

settings canbe found in [19].

DARPA Data

Results for the DARPA data set are given in

Table 2. First ofall, it must be stated there is an

operation point of the SVMat the detection layer (OP

1) where we do not miss anyattack instances at all (at

least in addition to those alreadymissed at the

detection layer). The reduction rate is with99.87

percent extremely high, and the detection delay

isonly 5.41 s in the worst case (d100%). Average and

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 7

worst caseruntimes are very good, too.All OP will

now be analyzed in much more detail.

All attack instances for which the detector

produces at least a single alert are detected in the

idealized case and with OP 1 and OP 2. Choosing

another OP, the rate of detected instances drops to

98.04 percent (OP 3) and 99.02 percent (OP 4). In OP

3, a FORMAT instance and a MULTIHOP instance

are missed. In OP 4, only the FORMAT instance

could not be detected. A further analysis identified

the following reasons: The main reason in the case of

the FORMAT instance is the small number of only

four alerts. Those alerts are created by the detector

layer for all OP, i.e., there is obviously no benefit

from choosing

Results of the Online Alert Aggregation for

Three Benchmark Data Sets

Table 3.

IX. Conclusion

The experiments demonstrated the broad

applicability ofthe proposed online alert aggregation

approach. We analyzed three different data sets and

showed thatMachine-learning-based detectors,

conventional signature baseddetectors, and even

firewalls can be used as alertgenerators. In all cases,

the amount of data could bereduced substantially.

Although there are situations asdescribed in Section

3.3—especially clusters that arewrongly split—the

instance detection rate is very high:None or only very

few attack instances were missed.Runtime and

component creation delay are well suited foran online

application. We presented a novel technique for

online alert aggregationand generation of meta-alerts.

We have shown that thesheer amount of data that

must be reported to a humansecurity expert or

communicated within a distributedintrusion detection

system, for instance, can be reducedsignificantly. The

reduction rate with respect to the numberof alerts was

up to 99.96 percent in our experiments. At thesame

time, the number of missing attack instances

isextremely low or even zero in some of our

experimentsand the delay for the detection of attack

instances is withinthe range of some seconds only.In

the future, we will develop techniques for

interestingness-based communication strategies for a

distributedIDS. This IDS will be based on organic

computing principles[44]. In addition, we will

investigate how human domain knowledge can be

used to improve the detection processes further. We

will also apply our techniques to benchmark data that

fuse information from heterogeneous sources (e.g.,

combining host and network-based detection).

References

[1] S. Axelsson, “Intrusion Detection Systems: A Survey

and

Taxonomy,” Technical Report 99-15, Dept. of Computer

Eng.,

Chalmers Univ. of Technology, 2000.

[2] M.R. Endsley, “Theoretical Underpinnings of Situation

Awareness: A Critical Review,” Situation Awareness

Analysis and Measurement, M.R. Endsley and D.J.

Garland, eds., chapter 1, pp. 3-32, Lawrence Erlbaum

Assoc., 2000.

[3] C.M. Bishop, Pattern Recognition and Machine

Learning. Springer, 2006.

[4] M.R. Henzinger, P. Raghavan, and S. Rajagopalan,

Computing on Data Streams. Am. Math. Soc., 1999.

[5] A. Allen, “Intrusion Detection Systems: Perspective,”

Technical Report DPRO-95367, Gartner, Inc., 2003.

[6] F. Valeur, G. Vigna, C. Kru¨ gel, and R.A. Kemmerer,

“A

Comprehensive Approach to Intrusion Detection Alert

Correlation,” IEEE Trans. Dependable and Secure

Computing, vol. 1, no. 3, pp. 146-169, July-Sept. 2004.

[7] H. Debar and A. Wespi, “Aggregation and Correlation

of

Intrusion-Detection Alerts,” Recent Advances in Intrusion

Detection, W. Lee, L. Me, and A. Wespi, eds., pp. 85-103,

Springer, 2001.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor : 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 8

[8] D. Li, Z. Li, and J. Ma, “Processing Intrusion Detection

Alerts in Large-Scale Network,” Proc. Int’l Symp.

Electronic Commerce and Security, pp. 545-548, 2008.

[9] F. Cuppens, “Managing Alerts in a Multi-Intrusion

Detection Environment,” Proc. 17th Ann. Computer

Security Applications Conf. (ACSAC ’01), pp. 22-31,

2001.

[10] A. Valdes and K. Skinner, “Probabilistic Alert

Correlation,” Recent Advances in Intrusion Detection, W.

Lee, L. Me, and A. Wespi, eds. pp. 54-68, Springer, 2001.

[11] K. Julisch, “Using Root Cause Analysis to Handle

Intrusion Detection Alarms,” PhD dissertation, Universita¨

t Dortmund, 2003. HOFMANN AND SICK: ONLINE

INTRUSION ALERT AGGREGATION WITH

GENERATIVE DATA STREAM MODELING 293

[12] T. Pietraszek, “Alert Classification to Reduce False

Positives in Intrusion Detection,” PhD dissertation,

Universita¨ t Freiburg, 2006.

[13] F. Autrel and F. Cuppens, “Using an Intrusion

Detection Alert Similarity Operator to Aggregate and Fuse

Alerts,” Proc. Fourth Conf. Security and Network

Architectures, pp. 312-322, 2005.

[14] G. Giacinto, R. Perdisci, and F. Roli, “Alarm

Clustering for Intrusion Detection Systems in Computer

Networks,” Machine Learning and Data Mining in Pattern

Recognition, P. Perner and A. Imiya, eds. pp. 184-193,

Springer, 2005.

[15] O. Dain and R. Cunningham, “Fusing a Heterogeneous

Alert Stream into Scenarios,” Proc. 2001 ACM Workshop

Data Mining for Security Applications, pp. 1-13, 2001.

[16] P. Ning, Y. Cui, D.S. Reeves, and D. Xu, “Techniques

and Tools for Analyzing Intrusion Alerts,” ACM Trans.

Information Systemsn Security, vol. 7, no. 2, pp. 274-318,

2004.

[17] F. Cuppens and R. Ortalo, “LAMBDA: A Language to

Model a Database for Detection of Attacks,” Recent

Advances in Intrusion Detection, H. Debar, L. Me, and S.F.

Wu, eds. pp. 197-216, Springer, 2000.

[18] S.T. Eckmann, G. Vigna, and R.A. Kemmerer,

“STATL: An Attack Language for State-Based Intrusion

Detection,” J. Computer Security, vol. 10, nos. 1/2, pp. 71-

103, 2002.

 [20] M.S. Shin, H. Moon, K.H. Ryu, K. Kim, and J. Kim,

“Applying Data Mining Techniques to Analyze Alert

Data,” Web Technologies and Applications, X. Zhou, Y.

Zhang, and M.E. Orlowska, eds. pp. 193-200, Springer,

2003.

[21] J. Song, H. Ohba, H. Takakura, Y. Okabe, K. Ohira,

and Y. Kwon, “A Comprehensive Approach to Detect

Unknown Attacks viaIntrusion Detection Alerts,”

Advances in Computer ScienceASIAN2007, Computer and

Network Security, I. Cervesato, ed., pp. 247-253,Springer,

2008.

[22] R. Smith, N. Japkowicz, M. Dondo, and P. Mason,

“UsingUnsupervised Learning for Network Alert

Correlation,”Advances in Artificial Intelligence, R. Goebel,

J. Siekmann, andW. Wahlster, eds. pp. 308-319, Springer,

2008.

