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Abstract 
An intrusion detection system (IDS) is a security layer used 

to detect ongoing intrusive activities in information 

systems. Traditionally, intrusion detection relies on 

extensive knowledge of security experts, in particular, on 

their familiarity with the computer system to be protected. 

Alert aggregation is an important subtask of intrusion 

detection. The goal is to identify and to cluster 

differentalerts—produced by low-level intrusion detection 

systems, firewalls, etc.—belonging to a specific attack 

instance which has been Initiated by an attacker at a certain 

point in time. With three benchmark data sets, we 

demonstrate that it is possible to achieve reduction rates of 

up to 99.96 percent while the number of missing meta-

alerts is extremely low. In addition, meta-alerts are 

generated with a delay of typically only a few seconds after 

observing the first alert belonging to a new attack instance. 

Keywords—Attack detection model, Intrusion 

detection, alert aggregation, generative modeling, 

data stream algorithm 

I. Introduction 

Detection systems (IDS) are besides other 

Protective measures such as virtual private networks, 

Authenticationmechanisms or encryption techniques 

veryImportant to guarantee information security. 

They help to defend against the various threats to 

which networks and hosts are exposed to by detecting 

the actions of attackers or Attack tools in a network 

or host-based manner with misuse or anomaly 

detection techniques . At present, most IDS are quite 

reliable in detecting suspicious actions by evaluating 

TCP/IP connections or log files, for instance. Once an 

IDS finds a suspicious action, it Immediately creates 

an alert which contains information about the source, 

target, and estimated type of the attack (e.g., SQL 

injection, buffer overflow, or denial of service). As 

the intrusive actions caused by a single attack 

instance— Which is the occurrence of an attack of a 

particular type that has been launched by a specific 

attacker at a certain point in time—are often spread 

over many network connections or log file entries, a 

single attack instance often results in Hundreds or 

even thousands of alerts. IDS usually focus on 

Detectingattack types, but not on distinguishing  

 
 

between differentattack instances. In addition, even 

low rates of false Alerts could easily result in a high 

total number of false alerts if thousands of network 

packets or log file entries are Inspected. As a 

consequence, the IDS creates many alerts at a low 

level of abstraction. It is extremely difficult for a 

human security expert to inspect this flood of alerts, 

and decisions that follow from single alerts might be 

wrong with a relatively high probability. In our 

opinion, “perfect” IDS should be situation-aware in 

the sense that at any point in time it should “know” 

what is going on in its environment regarding attack 

instances (of various types) and attackers. In this 

paper, we make an important step toward this goal by 

introducing and evaluating a new technique for alert 

aggregation. Alerts may originate from low-level IDS 

such as those mentioned above, from firewalls (FW), 

etc. Alerts that belong to one Attack instance must be 

clustered together and meta-alerts must be generated 

for these clusters. The main goal is to reduce the 

amount of alerts substantially without losing any 

Important information which is necessary to identify 

ongoing attack instances. We want to have no 

missing met alerts, but in turn we accept false or 

redundant meta-alerts to a certain degree. This 

problem is not new, but current solutions are 

Typically based on a quite simple sorting of alerts, 

e.g., according to their source, destination, and attack 

type. Under real conditions such as the presence of 

classification errors of the low-level IDS (e.g., false 

alerts), uncertainty with respect to the source of the 

attack due to spoofed IP addresses, or wrongly 

adjusted time windows, for instance, such an 

approach fails quite often. Our approach has the 

following distinct properties: . It is a generative 

modeling approach  using probabilistic methods. 

Assuming that attack instances can be regarded as 

random processes “producing” alerts, we aim at 

modeling these processes using approximate 

maximum likelihood parameter estimation 

techniques. Thus, the beginning as well as the 

completion of attack instances can be detected. . It is 

a data stream approach, i.e., each observed alert is 

Processed only a few times . Thus, it can be Applied 

online and under harsh timing constraints. 
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II.Related Work 

Most existing IDS are optimized to detect attacks 

with high accuracy. However, they still have various 

disadvantages That have Been outlined in a number 

of publications and a lot of work has been done to 

analyze IDS in order to direct Futureresearch , for 

instance. Besides others, one drawback is the large 

amount of alerts produced. Recent research focuses 

on the correlation of alerts from (possibly multiple) 

IDS. If not stated otherwise, all approaches outlined 

in the following present either online algorithms or—

as we see it—can easily be extended to an online 

version. Probably, the most comprehensive approach 

to alert 

Correlation is introduced in . One step in the 

presented Correlation approach is attack thread 

reconstruction, which can be seen as a kind of attack 

instance recognition. No clustering algorithm is used, 

but a strict sorting of alerts within a temporal window 

of fixed length according to the source, destination, 

and attack classification (attack type). In , a similar 

approach is used to eliminate duplicates, i.e., alerts 

that share the same quadruple of source and 

destination address as well as source and destination 

port. In addition, alerts are aggregated (online) into 

predefined clusters (so-called situations) in order to 

provide a more condensed view of the current attack 

situation. The definition of such situations is also 

used in  to cluster alerts. In , alert clustering is used to 

group alerts that belong to the same attack 

occurrence. Even though called clustering, there is no 

clustering algorithm in a classic sense. The alerts 

from one (or possibly several) IDS are stored in a 

relational database and a similarity relation—which is 

based on expert rules—is used to group similar alerts 

together. Two alerts are defined to be similar, for 

instance, if both occur within a fixed time window 

and their source and target match exactly. As already 

mentioned, these approachesare likely to fail under 

real-life conditions with imperfect classifiers (i.e., 

low-level IDS) with false alerts or wrongly adjusted 

time windows. Another approach to alert correlation 

is presented in . A weighted, attribute-wise similarity 

operator is used to decide whether to fuse two alerts 

or not. However, as already stated in  and  , this 

approach suffers from the high number of parameters 

that need to be set. The similarity operator presented 

in  has the same disadvantage— there are lots of 

parameters that must be set by the user and there is 

no or only little guidance in order to find good 

values. In , another clustering algorithm that is based 

on attribute-wise similarity measures with 

userdefined parameters is presented. However, a 

closer look at the parameter setting reveals that the 

similarity measure, in fact, degenerates to a strict 

sorting according to the source and destination IP 

addresses and ports of the alerts. The drawbacks that 

arise thereof are the same as those mentioned above. 

In , three different approaches are presented to fuse 

alerts. The first, quite simple one groups alerts 

according to their source IP address only. The other 

two approaches are based on different supervised 

learning techniques. Besides a basic least-squares 

error approach, multilayer perceptrons, radial basis 

function networks, and decision trees are used to 

decide whether to fuse a new alert with an already 

existing meta-alert (called scenario) or not. Due to 

the supervised nature, labeled training data need to 

begenerated which could be quite difficult in case of 

various attack instances. The same or quite similar 

techniques as described so far are also applied in 

many other approaches to alert correlation, especially 

in the field of intrusion scenario detection. Prominent 

research in scenario detection is described in , for 

example. More details can be found in . In , an offline 

clustering solution based on the CURE algorithm is 

presented. The solution is restricted to numerical 

attributes. In addition, the number of clusters must be 

set manually. This is problematic, as in fact it 

assumes that the security expert has knowledge about 

the actual number of ongoing attack instances. The 

alert clustering solution described in  is more related 

to ours. A link-based clustering approach is used to 

repeatedly fuse alerts into more generalized ones. The 

intention is to discover the reasons for the existence 

of the majority of alerts, the socalled root causes, and 

to eliminate them subsequently. An attack instance in 

our sense can also be seen as a kind of root cause, but 

in  root causes are regarded as “generally persistent” 

which does not hold for attack instances that occur 

only within a limited time window. Furthermore, 

only root causes that are responsible for a majority of 

alerts are of interest and the attribute-oriented 

induction algorithm is forced “to find large clusters” 

as the alert load can thus be reduced at most. Attack 

instances that result in a small number of alerts (such 

as PHF or FFB) are likely to be ignored completely. 

The main difference to our approach is that the 

algorithm can only be used in an offline setting and is 

intended to analyze historical alert logs. In contrast, 

we use an online approach to model the current attack 

situation. The alert clustering approach described in   

is based on but aims at reducing the false positive 

rate. The created cluster structure is used as a filter to 
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reduce the amount of created alerts. Those alerts that 

are similar to already known false positives are kept 

back, whereas alerts that are considered to be 

legitimate (i.e., dissimilar to all known false 

positives) are reported and not further aggregated. 

The same idea—but based on a different offline 

clustering algorithm—is presented in. A completely 

different clustering approach is presented in . There, 

the reconstruction error of an autoassociator neural 

network (AA-NN) is used to distinguish different 

types of alerts. Alerts that yield the same (or a 

similar) reconstruction error are put into the same 

cluster. The approach can be applied online, but an 

offline training phase and training data are needed to 

train the AA-NN and also to manually adjust 

intervals for the reconstruction error that determine 

which alerts are clustered together.  

III.Proposed System 

Alerts may also beproduced by FW or the like. 

At the alert processing layer,the alert aggregation 

module has to combine alerts that areassumed to 

belong to a specific attack instance. Thus, so-

calledmeta-alerts are generated. Meta-alerts are used 

orenhanced in various ways, e.g., scenario detection 

ordecentralized alert correlation. An important task of 

thereaction layer is reporting.The overall architecture 

of the distributed intrusiondetection system and a 

framework for large-scale simulationsare described in  

more detail.In our layered ID agent architecture, each 

layer assesses, filters, and/or aggregates information 

produced by a lower layer. Thus, relevant 

information gets more and more condensed and 

certain, and, therefore, also more valuable. We aim at 

realizing each layer in a way such that the recall of 

the applied techniques is very high, possibly at the 

cost of a slightly poorer precision . In other words, 

with the alert aggregation module—on which we 

focus in this paper—we want to have a minimal 

number of missingmeta-alerts (false negatives) and 

we accept some false metaalerts (false positives) and 

redundant meta-alerts in turn. turned out that due to 

the dimensionality reduction by the AA-NN, alerts of 

different types can have the same reconstruction error 

which leads to erroneous clustering. In our prior 

work, we applied the well-known c-means clustering 

algorithm in order to identify attack instances. 

However, this algorithm also works in a purely 

offlinemanner.  

Web search engines provide an efficient interface 

to this vast information. Page counts and snippets are 

two useful information sources provided by most web 

search engines. Page count of a query is an estimate 

of the number of pages that contain the query words. 

 

 

Fig. 1 Shows the Architecture diagram. 

 

IV. A Novel Online Alert 

AggregationTechnique 

In this section, we describe our new alert 

aggregationApproach which is—at each point in 

time—based on aprobabilistic model of the current 

situation. To outline thepreconditions and objectives 

of alert aggregation, we startwith a short sketch of 

our intrusion framework. Then, webriefly describe 

the generation of alerts and the alert format.We 

continue with a new clustering algorithm for 

offlinealert aggregation which is basically a 

parameter estimationtechnique for the probabilistic 

model. After that, we extendthis offline method to an 

algorithm for data stream clusteringwhich can be 

applied to online alert aggregation. Finally, wemake 

some remarks on the generation of meta-alerts. 

Sensor Networks 

The extensive number of research work in this 

area has appeared in the literature. Due to the limited 

energy budget available at sensor nodes, the primary 

issue is how to develop energy-efficient techniques to 

reduce communication and energy costs in the 

networks. Approximate-based data aggregation 

techniques have also been proposed. The idea is to 

tradeoff some data quality for improved energy 

efficiency. Silberstein et al. develop a sampling-based 
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approach to evaluate approximate top-k queries in 

wireless sensor networks. Based on statistical 

modeling techniques, a model-driven approach was 

proposed in to balance the confidence of the query 

answer against the communication cost in the 

network. Moreover, continuous top-k queries for 

sensor networks have been studied in and. In 

addition, a distributed threshold join algorithm has 

been developed for top-k queries. These studies, 

considering no uncertain data, have a different focus 

from our study.  

V.Offline Alert Aggregation 

In this section, we introduce an offline algorithm 

for alertAggregation which will be extended to a data 

streamalgorithm for online aggregation in .Assume 

that a host with an ID agent is exposed to acertain 

intrusion situation as sketched in : One orseveral 

attackers launch several attack instances belongingto 

various attack types. The attack instances each cause 

anumber of alerts with various attribute values. Only 

two ofthe attributes are shown and the 

correspondence of alertsand (true or estimated) attack 

instances is indicated bydifferent symbols. shows a 

view on the “idealworld” which an ID agent does not 

have. The agent onlyhas observations of the detectors 

(alerts) in the attributespace without attack instance 

labels as outlined in .The task of the alert aggregation 

module is now to estimatethe assignment to instances 

by using the unlabeled observations only and by 

analyzing the cluster structurein the attribute space. 

That is, it has to reconstruct the attacksituation. Then, 

meta-alerts can be generated that arebasically an 

abstract description of the cluster of alertsassumed to 

originate from one attack instance. Thus, theamount 

of data is reduced substantially without losing 

important information. shows the result of 

areconstruction of the situation. There may be 

differentpotentially problematic situations: 

1. False alerts are not recognized as such and 

wronglyassigned to clusters: This situation is 

acceptable aslong as the number of false alerts is 

comparably low. 

2. True alerts are wrongly assigned to clusters: 

Thissituation is not really problematic as long as 

themajority of alerts belonging to that cluster 

iscorrectly assigned. Then, no attack instance 

ismissed. 

3. Clusters are wrongly split: This situation is 

undesiredbut clearly unproblematic as it leads 

toredundant meta-alerts only. Only the data 

reductionrate is lower, no attack instance is missed. 

4. Several clusters are wrongly combined into 

one: This situation is definitely problematic as 

attackinstances may be missed.According to our 

objectives  we must try toavoid the latter situation but 

we may accept the formerthree situations to a certain 

degree.How can the set of samples be clustered (i.e., 

aggregated)to generate meta-alerts? Here, the answer 

to thisquestion is identical to the answer to the 

following: Howcan an attack situation be modeled 

with a parameterizedprobabilistic model and how can 

the parameters beestimated from the 

observations?First, we introduce a model for a single 

attack instance.We regard an attack instance as a 

random process generatingalerts that are distributed 

according to a certain multivariateprobability 

distribution. The alert space is composedof several 

attributes. 

VI. Associated Work 

In recent years, many works have been done to 

Here; we review representative work in the areas of 

processing in wireless sensor networks, and 2 

processing on uncertain data. Top-k query processing 

in sensor networks. An extensive number of research 

works in this area has appeared in the literature [21], 

[24], [25], [26]). Due to the limited energy budget 

available at sensor nodes, the primary issue is how to 

develop energy-efficient techniques to reduce 

communication and energy costs in the networks. 

TAG [21] is one of the first studies in this area. By 

exploring the semantics of aggregate operators (e.g., 

sum, avg, and top-k), in-network processing approach 

is adopted to suppress redundant data transmissions 

in wireless sensor networks. Approximate-based data 

aggregation techniques have also been proposed [27], 

[25]. The idea is to tradeoff some data quality for 

improved energy efficiency. Silberstein et al. develop 

a sampling-based approach to evaluate approximate 

on statistical modeling techniques, a model-driven 

approach was proposed in [5] to balance the 

confidence of the query answer against the 

communication cost in the network. Moreover, 

continuous top-k queries for sensor networks have 

been studied in [28] and [29]. In addition, a 

distributed threshold join algorithm has been 

developed for top-k queries [24]. These studies, 

considering no uncertain data, have a different focus 
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from our study. Top-k query processing on uncertain 

data. While research works on conventional top-k 

queries are mostly based on some deterministic 

scoring functions, the new factor of tuple 

membership probability in uncertain databases makes 

evaluation of probabilistic top-k queries very 

complicated since the top-k answer set depends not 

only on the ranking scores of candidate tuples but 

also their probabilities [8]. For uncertain databases, 

two interesting top-k definitions (i.e., U-Topk and U-

kRanks) and A_-like algorithms are proposed [17]. 

U-Topk returns a list of k tuples that has the highest 

probability to be in the top-k list over all possible 

worlds. U-kRanks returns a list of k tuples such that 

the ith record has the highest probability to be the ith 

best record in all possible worlds. In [13], PT-Topk 

query, which returns the set of tuples with a 

probability of at least p to be in the top-k lists in the 

possible worlds, is studied. Inspired by the concept of 

dominate set in the top-k query, an algorithm which 

avoids unfolding all possible worlds is given. 

Besides, a sampling method is developed to quickly 

compute an approximation with quality guarantee to 

the answer set by drawing a small sample of the 

uncertain data. In [19], the expected rank of each 

tuple across all possible worlds serves as the ranking 

function for finding the final answer. In [30], U-Topk 

and U-kRank queries are improved by exploiting 

their stop conditions. In [31], all existing top-k 

semantics have been unified by using generating 

functions. Recently, a study on processing top-k 

queries over a distributed uncertain database is 

reported in [14] and [23]. Li et al. [14] only support 

top-k queries with the expected ranking semantic. On 

the contrary, our proposal is a general approach 

which is applicable to probabilistic top-k queries with 

any semantic. Furthermore, instead of repeatedly 

requesting data which may last for several rounds, 

our protocols are guaranteed to be completed within 

no more than two rounds. These differences uniquely 

differentiate our effort from [14]. Our previous work 

[23] as the initial attempt only includes the concept of 

sufficient set. In this paper, besides of sufficient set, 

we propose another important concept of necessary 

set. With the aid of these two concepts, we further 

develop a suite of algorithms, which show much 

better performance than the one in [23]. Probabilistic 

ranked queries based on uncertainty at the attribute 

level are studied in [32], [33], and [19]. A unique 

study that ranks tuples by their probabilities 

satisfying the query is presented in [12]. Finally, 

uncertain top-k query is studied under the setting of 

streaming databases where a compact data set is 

exploited to support efficient slide window top-k 

queries [18]. We will apply sufficient set and 

necessary set to sensor networks with tree topology, 

to further improve query processing performance by 

facilitating sophisticated in-network filtering at the 

intermediate nodes along the routing path to the root  

 

VII. Experimental Setup And Result 

This section evaluates the new alert aggregation 

approach.We use three different data sets to 

demonstrate the  

 
Table 1.ROC curve for the SVM detector 

 

Feasibility of the proposed method: The first is the 

well-knownDARPA intrusion detection evaluation 

data set [32],for the second we used real-life network 

traffic datacollected at our university campus 

network, and the thirdcontains firewall log messages 

from a commercial Internetservice provider. All 

experiments were conducted on an PCwith 2.20 GHz 

and 2 GB of RAM. 

Description of the Benchmark Data Sets 

DARPA Data 

For the DARPA evaluation [32], several weeks 

of trainingand test data have been generated on a test 

bed that emulatesa small government site. The 

network architecture as well asthe generated network 

traffic has been designed to be similarto that of an Air 

Force base. We used the TCP/IP networkdump as 

input data and analyzed all 104 TCP-based 

attackinstances (corresponding to more than 20 attack 

types) thathave been launched against the various 

target hosts. Assketched in Section 3.2, sensors 

extract statistical informationfrom the network traffic 

data. At the detection layer, weapply SVM to classify 
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the sensor events. By applying avarying threshold to 

the output of the classifier, a so-calledreceiver 

operating characteristics (ROC) curve can becreated 

[38]. The ROC curve in Fig. 4 plots the true 

positiverate (TPR, number of true positives divided 

by the sum oftrue positives and false negatives) 

against the false positiverate (FPR, number of false 

positives divided by the sum offalse positives and 

true negatives) for the trained SVM. Eachpoint of the 

curve corresponds to a specific threshold. 

Fouroperating points (OP) are marked. OP 1 is the 

one with thesmallest overall error, but as we want to 

realize a high recall,we also investigate three more 

operating points whichexhibit higher TPR at the cost 

of an increased FPR. We willalso investigate the 

aggregation under idealized conditionswhere we 

assume to have a perfect detector layer with 

nomissing and no false alerts at all. As attributes for 

the alerts,we use the source and destination IP 

address, the source anddestination port, the attack 

type, and the creation timedifferences (based on the 

creation time stamps). 

Table 1 shows the number of alerts produced for 

the different OP and also for the idealized condition, 

i.e., aperfect detection layer. In addition, the number 

of attackinstances for which at least one alert is 

generated by thedetector layer is also given. Note that 

we have 104 attackinstances in the data set 

altogether. For OP 1, there are threeattack instances 

for which not even a single alert is created,i.e., these 

instances are already missed at the detection 

layer.The three instances are missed because there are 

only a fewtraining samples of the corresponding 

attack types in thedata set which results in a bad 

generalization performanceof the SVM. Switching 

from OP 1 to OP 2 alerts are createdfor one more 

instance. OP 3 and OP 4 do not yield anyfurther 

improvement.We are aware of the various critique on 

the DARPAbenchmark data (e.g., published in [39], 

[40]) and thelimitations that emerge thereof. Despite 

all disadvantages,this data set is still frequently 

used—not least because it is awell-documented and 

publicly available data set that allowsthe comparison 

of results of different researchers. In orderto achieve 

fair and realistic results, we carefully analyzed 

allknown deficiencies and omitted features that could 

bias thedetector classification performance. Besides, 

most of thedeficiencies of this data set have an 

impact on the detectorlayer but only little influence 

on the alert aggregationresults. A detailed discussion 

can be found in [19] and [41]. 
 

Input of the Alert Aggregation Algorithm 

 

 
Table 2. 

 

VIII.Results 

In the following, the results for the alert 

aggregation arepresented. For all experiments, the 

same parameter settingsare used. We set the threshold 

_ that decides whether to adda new alert to an 

existing component or not to five percent,and the 

value for the threshold _ that specifies the 

allowedtemporal spread of the alert buffer to 180 

seconds. _ was setthat low value in order to ensure 

that even a quite smalldegrade of the cluster quality, 

which could indicate a newattack instance, results in 

a new component. A small valueof _, of course, 

results in more components and, thus, in alower 

reduction rate, but it also reduces the risk of 

missingattack instances. The parameter _, which is 

used in thenovelty assessment function, controls the 

maximum timethat new alerts are allowed to reside in 

the buffer B. In orderto keep the response time short, 

we set it to 180 s which wethink is a reasonable 

value. For both parameters, there werelarge intervals 

in which parameter values could be chosenwithout 

deteriorating the results. A detailed analysis 

anddiscussion on the effects of different parameter 

settings canbe found in [19]. 

DARPA Data 

Results for the DARPA data set are given in 

Table 2. First ofall, it must be stated there is an 

operation point of the SVMat the detection layer (OP 

1) where we do not miss anyattack instances at all (at 

least in addition to those alreadymissed at the 

detection layer). The reduction rate is with99.87 

percent extremely high, and the detection delay 

isonly 5.41 s in the worst case (d100%). Average and 
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worst caseruntimes are very good, too.All OP will 

now be analyzed in much more detail. 

All attack instances for which the detector 

produces at least a single alert are detected in the 

idealized case and with OP 1 and OP 2. Choosing 

another OP, the rate of detected instances drops to 

98.04 percent (OP 3) and 99.02 percent (OP 4). In OP 

3, a FORMAT instance and a MULTIHOP instance 

are missed. In OP 4, only the FORMAT instance 

could not be detected. A further analysis identified 

the following reasons: The main reason in the case of 

the FORMAT instance is the small number of only 

four alerts. Those alerts are created by the detector 

layer for all OP, i.e., there is obviously no benefit 

from choosing 

Results of the Online Alert Aggregation for 

Three Benchmark Data Sets 

 

 
Table 3. 

 

IX. Conclusion 

The experiments demonstrated the broad 

applicability ofthe proposed online alert aggregation 

approach. We analyzed three different data sets and 

showed thatMachine-learning-based detectors, 

conventional signature baseddetectors, and even 

firewalls can be used as alertgenerators. In all cases, 

the amount of data could bereduced substantially. 

Although there are situations asdescribed in Section 

3.3—especially clusters that arewrongly split—the 

instance detection rate is very high:None or only very 

few attack instances were missed.Runtime and 

component creation delay are well suited foran online 

application. We presented a novel technique for 

online alert aggregationand generation of meta-alerts. 

We have shown that thesheer amount of data that 

must be reported to a humansecurity expert or 

communicated within a distributedintrusion detection 

system, for instance, can be reducedsignificantly. The 

reduction rate with respect to the numberof alerts was 

up to 99.96 percent in our experiments. At thesame 

time, the number of missing attack instances 

isextremely low or even zero in some of our 

experimentsand the delay for the detection of attack 

instances is withinthe range of some seconds only.In 

the future, we will develop techniques for 

interestingness-based communication strategies for a 

distributedIDS. This IDS will be based on organic 

computing principles[44]. In addition, we will 

investigate how human domain knowledge can be 

used to improve the detection processes further. We 

will also apply our techniques to benchmark data that 

fuse information from heterogeneous sources (e.g., 

combining host and network-based detection). 

References 
 
[1] S. Axelsson, “Intrusion Detection Systems: A Survey 

and 

Taxonomy,” Technical Report 99-15, Dept. of Computer 

Eng., 

Chalmers Univ. of Technology, 2000. 

 

[2] M.R. Endsley, “Theoretical Underpinnings of Situation 

Awareness: A Critical Review,” Situation Awareness 

Analysis and Measurement, M.R. Endsley and D.J. 

Garland, eds., chapter 1, pp. 3-32, Lawrence Erlbaum 

Assoc., 2000. 

 

[3] C.M. Bishop, Pattern Recognition and Machine 

Learning. Springer, 2006. 

 

[4] M.R. Henzinger, P. Raghavan, and S. Rajagopalan, 

Computing on Data Streams. Am. Math. Soc., 1999. 

 

[5] A. Allen, “Intrusion Detection Systems: Perspective,” 

Technical Report DPRO-95367, Gartner, Inc., 2003. 

 

[6] F. Valeur, G. Vigna, C. Kru¨ gel, and R.A. Kemmerer, 

“A 

Comprehensive Approach to Intrusion Detection Alert 

Correlation,” IEEE Trans. Dependable and Secure 

Computing, vol. 1, no. 3, pp. 146-169, July-Sept. 2004. 

 

[7] H. Debar and A. Wespi, “Aggregation and Correlation 

of 

Intrusion-Detection Alerts,” Recent Advances in Intrusion 

Detection, W. Lee, L. Me, and A. Wespi, eds., pp. 85-103, 

Springer, 2001. 

 



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014 

ISSN: 2320 – 8791 (Impact Factor : 1.479)   

www.ijreat.org 

 

www.ijreat.org 
                       Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)                                   8 

 

[8] D. Li, Z. Li, and J. Ma, “Processing Intrusion Detection 

Alerts in Large-Scale Network,” Proc. Int’l Symp. 

Electronic Commerce and Security, pp. 545-548, 2008. 

 

[9] F. Cuppens, “Managing Alerts in a Multi-Intrusion 

Detection Environment,” Proc. 17th Ann. Computer 

Security Applications Conf. (ACSAC ’01), pp. 22-31, 

2001. 

 

[10] A. Valdes and K. Skinner, “Probabilistic Alert 

Correlation,” Recent Advances in Intrusion Detection, W. 

Lee, L. Me, and A. Wespi, eds. pp. 54-68, Springer, 2001. 

 

[11] K. Julisch, “Using Root Cause Analysis to Handle 

Intrusion Detection Alarms,” PhD dissertation, Universita¨ 

t Dortmund, 2003. HOFMANN AND SICK: ONLINE 

INTRUSION ALERT AGGREGATION WITH 

GENERATIVE DATA STREAM MODELING 293 

 

[12] T. Pietraszek, “Alert Classification to Reduce False 

Positives in Intrusion Detection,” PhD dissertation, 

Universita¨ t Freiburg, 2006. 

 

[13] F. Autrel and F. Cuppens, “Using an Intrusion 

Detection Alert Similarity Operator to Aggregate and Fuse 

Alerts,” Proc. Fourth Conf. Security and Network 

Architectures, pp. 312-322, 2005. 

 
[14] G. Giacinto, R. Perdisci, and F. Roli, “Alarm 

Clustering for Intrusion Detection Systems in Computer 

Networks,” Machine Learning and Data Mining in Pattern 

Recognition, P. Perner and A. Imiya, eds. pp. 184-193, 

Springer, 2005. 

 

[15] O. Dain and R. Cunningham, “Fusing a Heterogeneous 

Alert Stream into Scenarios,” Proc. 2001 ACM Workshop 

Data Mining for Security Applications, pp. 1-13, 2001. 

 

[16] P. Ning, Y. Cui, D.S. Reeves, and D. Xu, “Techniques 

and Tools for Analyzing Intrusion Alerts,” ACM Trans. 

Information Systemsn Security, vol. 7, no. 2, pp. 274-318, 

2004. 

 

[17] F. Cuppens and R. Ortalo, “LAMBDA: A Language to 

Model a Database for Detection of Attacks,” Recent 

Advances in Intrusion Detection, H. Debar, L. Me, and S.F. 

Wu, eds. pp. 197-216, Springer, 2000. 

 

[18] S.T. Eckmann, G. Vigna, and R.A. Kemmerer, 

“STATL: An Attack Language for State-Based Intrusion 

Detection,” J. Computer Security, vol. 10, nos. 1/2, pp. 71-

103, 2002. 

 

 [20] M.S. Shin, H. Moon, K.H. Ryu, K. Kim, and J. Kim, 

“Applying Data Mining Techniques to Analyze Alert 

Data,” Web Technologies and Applications, X. Zhou, Y. 

Zhang, and M.E. Orlowska, eds. pp. 193-200, Springer, 

2003. 

 

[21] J. Song, H. Ohba, H. Takakura, Y. Okabe, K. Ohira, 

and Y. Kwon, “A Comprehensive Approach to Detect 

Unknown Attacks viaIntrusion Detection Alerts,” 

Advances in Computer ScienceASIAN2007, Computer and 

Network Security, I. Cervesato, ed., pp. 247-253,Springer, 

2008. 

 

[22] R. Smith, N. Japkowicz, M. Dondo, and P. Mason, 

“UsingUnsupervised Learning for Network Alert 

Correlation,”Advances in Artificial Intelligence, R. Goebel, 

J. Siekmann, andW. Wahlster, eds. pp. 308-319, Springer, 

2008. 

 

 


